Literately Programming a

Round Robin Scheduler

Hans-Georg Efer (h.g.esser@gmz.de)
Universitat Mannheim

August 24, 2008

Contents
1 A Process Execution Simulator 1
1.1 Some data structures 3
1.2 Initializing the process list 3
1.2.1 Processstatus 7
1.2.2 Processcreation, 8
1.3 Helper functions 8
2 The Main Loop 12
2.1 Running a process and handling blocked processes 14
3 The Round Robin Scheduler 15
4 Discussion 19
A Usage Instructions 19
References 20

This is my first attempt at “Literate Programming” [Knu84, Ram94|, using noweb
(http://www.cs.tufts.edu/~nr/noweb/). I have fully documented my Python
implementation of a Round Robin scheduler which I used in the lab work of my
Operating Systems lectures in the summer term 2008.

1 A Process Execution Simulator

The program reads a configuration file that holds information on processes for a
virtual system—each line of the configuration file describes one process. A sample
line looks like this:

August 24, 2008 sched-rr10.nw 2

3:2,5,1,5,2,-1

and it has the following meaning: The process specified by this line should

e begin execution at system time 3 (3:),

e compute for 2 time units, then block (on I/O) for 5 time units, compute an-
other 1 time unit, block for 5 time units, compute further 2 units (2,5,1,5,2,)

e and finally terminate (-1).

Several lines in the configuration file will thus declare the behavior of several pro-
cesses, and it is the scheduler’s task to execute these processes in some order, pos-
sibly in a preemptive manner.

The program (scheduler.py 2) consists of an initialization routine, a primary loop in
which the scheduler selects and executes processes, and a closing display of execution
statistics, and before those come some constant and variable definitions and function
declarations:

(scheduler.py 2)=
(python header 18c)
(user defined constants 15b)
(variable definitions 3a)
(function declarations 3c)
(main program 18b)

3a

3b

3c

August 24, 2008 sched-rr10.nw 3

1.1 Some data structures

The program uses some global variables which we initialize here:

e tasks is the process list; it can be regarded as a list of process control blocks
(PCBs). What such a PCB will look like, becomes clear in the following
section on initializing the process list. It begins life as an empty list.

e current holds the process ID (PID) of the current process. It is initialized as
—1 (saying: there is no current process).

e trace hold a log of process execution; see definition of log_to_trace (page
11).

e runqueue and blocked are two queues (lists again) holding process IDs of
processes which are currently ready/running or blocked. Processes which
have not entered the system yet and processes who have left it (terminated)
will occur in neither.

e cputime is the current time, the value of the virtual clock which starts at 0.

e finished is a boolean variable that says whether the simulator can stop or

not.
(variable definitions 3a)= (2) Ta»
tasks = [] # task list; list of PCBs
current = -1 # current process’ ID
trace = [] # trace/log of process execution
runqueue = [] # runqueue (with process IDs)
blocked = [] # blocked queue (with process IDs)
cputime = 0 # initialize the clock
finished = 0 # if 1, all processes have terminated

1.2 Initializing the process list

Let us start with the most simple code parts: parsing the configuration file and
creating the data structures which hold this information.

The init() function will read the configuration data from a file whose name was
supplied as a command line argument — thus it will need the argv function from the
sys module. Since it will also check for a wrong filename, it additionally requires
the exit function from the same module.

(init function 3b)= (3c)
def init O:
from sys import argv
from sys import exit
(open and read configuration file 4a)
(parse configuration data 4b)
return

Defines:
init, used in chunk 18b.

(function declarations 3c)= (2) 6an
(init function 3b)

4a

4b

August 24, 2008 sched-rr10.nw 4

where the configuration file is opened and then read with the standard Python file
method readlines():

(open and read configuration file 4a)= (3b)
try:
filename = argv[1]
f = open (filename, "r")
lines = f.readlines()

f.close O

except:
print "Error: requires filename of the process config file"
exit ()

The whole opening, reading and closing is embedded in a try block so that any
error occurring while trying to open or read the file will be caught; in that case a
warning message is generated and the program terminates via the exit () call.

As a next step the read lines are parsed: The configuration strings are first split at
the colon, so after the first split() the starting time and the rest are separated.
Then the remaining string is split again, using the comma as delimiter symbol.
Notice that initially all data are strings, so an explicit conversion to integers is
necessary for each datum, using the int () function. After this decomposition the
variable behavior contains a list of integers (including as last element the -1 ter-
minator. It is an error if a line does not end with -1, though this is not checked.
Finally the function create_process() is called with the start time and the be-
havior variables as arguments—how create_process() treats these data will be
shown in chunk (create process 8a).

(parse configuration data 4b)= (3b)
for 1 in lines:
if 1 == "\n": return

(starttime,times) = 1[:-1].split(":")

starttime = int(starttime)

times = times.split(",")

behavior=[]

for t in times:
behavior.append(int (t))

create_process (starttime, behavior)

Uses create_process 8a.

August 24, 2008 sched-rr10.nw 5

Before we can look at the process creation, we have to talk about the internal
data structures of the simple scheduler simulator. The task list tasks is a Python
list that contains Python dictionaries®', where each dictionary holds the complete
information about one of the processes, whether it has not yet started execution, is
in the mid of it, or has already terminated. Dictionaries can be augmented at any
time, so there is no need to predefine or fill all possible elements. For the purpose
of generating an initial process entry in the task list, the following fields in the
dictionary will be sufficient:

e starttime: this is the starting time of the process. the lowest possible number
is 0. If no other processes exist on the system at time ¢ and the start time of a
process is t, then the scheduler is expected to pick this process and execute its
first “instruction” at time ¢. The start time is the first field of a configuration
file line.

e behavior: this holds a list of iterating CPU (compute) and I/O (blocked)
times — the first element after initialization is always a CPU time value. The
meaning of this first value being 0 is that the process starts with an I/O cycle.?
If this array starts with two 0 elements, it is considered a syntactically wrong
entry; a user should always remove leading double-zero entries.

e firstruntime: the time, when the process was run for the first time — ini-
tialized to -1 for all new processes.

e cputime: amount of time the process has spent using the CPU.

e iotime: amount of time the process has spent waiting for I/O. (Notice that
other processes may be executed during the waiting time, or the CPU may
idle.) After the process terminates, the sum of CPU and I/O time will be the
total time of process existence in the system.

e status: This is a status flag which will be explained in the next subsection.

e usedquant: This field holds the amount of time that the (currently active)
process has spent using the CPU (sind its last selection by the scheduler).

e endtime: The time at which the last CPU cycle finished. Convention: A
process that starts at time 0 and uses one unit of CPU time ends at time 0,
not 1.

Fields of the directory are accessed through square brackets, where the field name
has to be surrounded by double quotes ("): So the starttime field of the task
dictionary is task["starttime"].?

Since we attempt to treat the dictionary fields as private variables (in an object
oriented sense), we define several functions for accessing (reading and modifying)
these fields. In general, to read the property field of a process with PID pid, we
will define

get_property (pid): return tasks[pid] ["property"]
and similarly for setting a field we use set_. .. procedures:

set_property (pid,value): tasks[pid]["property"] = wvalue

Isee http://docs.python.org/tut/node7.html, section 5.5

2Whether this is conceptually useful or not, shall not matter for this purpose.

31t would be possible to omit the double quotes if each field name were treated as an integer
constant, e.g. by defining starttime=1, behavior=2 ..., and then using task[starttime] etc.

6a

6b

August 24, 2008 sched-rr10.nw 6

In some cases a simple increment procedure is defined that will first read a value,
add 1, and then write it back:

inc_property (ptd): set_property (pid, get_property (pid) + 1)

Last in the list is the function dec_behavior_head which takes the first element
in the behavior list and substracts 1 (assuming the value is > 1). The function
remove_behavior_head removes the head element of the behavior list; it is called
whenever a CPU or I/O phase ends and the process transitions to S_BLOCKED or
S_READY state, respectively.

(function declarations 3c)+= (2) <3c 6bp>
def set_behavior (pid, b_list): tasks[pid] ["behavior"] = b_list
def set_starttime (pid, t): tasks[pid] ["starttime"] = t
def set_cputime (pid, t): tasks[pid] ["cputime"] = t
def set_iotime (pid, t): tasks[pid] ["iotime"] = t
def set_status (pid, status): tasks[pid] ["status"] = status
def set_firstruntime (pid, t): tasks[pid] ["firstruntime"] = t
def set_endtime (pid, endtime): tasks[pid]["endtime"] = endtime
def set_firstruntime (pid,t): tasks[pid] ["firstruntime"] = t
def set_usedquant (pid,t): tasks [pid] ["usedquant"] = t
def get_behavior (pid): return tasks[pid] ["behavior"]
def get_starttime (pid): return tasks[pid] ["starttime"]
def get_endtime (pid): return tasks[pid] ["endtime"]
def get_cputime (pid): return tasks[pid] ["cputime"]
def get_iotime (pid): return tasks[pid] ["iotime"]
def get_status (pid): return tasks[pid] ["status"]
def get_firstruntime(pid): return tasks[pid] ["firstruntime"]
def get_usedquant(pid): return tasks[pid] ["usedquant"]

def inc_cputime (pid): set_cputime (pid, get_cputime(pid)+1)
def inc_iotime (pid): set_iotime (pid, get_iotime(pid)+1)
def inc_usedquant (pid): set_usedquant (pid, get_usedquant(pid)+1)

def dec_behavior_head (pid): tasks[pid] ["behavior"] [0] -= 1
def remove_behavior_head (pid):
set_behavior(pid, get_behavior(pid)[1:])

We also define a simple function that returns the next available process ID — in our
model process IDs start with 0, and each new process gets the next number as ID;
so it is simply the current length of the process list. However we also provide a
global variable proccount so that we need not calculate the list length.

(function declarations 3c)+= (2) <6a Tco
def get_freepid():
global proccount
proccount+=1
return proccount-1

Ta

b

Tc

August 24, 2008 sched-rr10.nw 7

As a side effect the get_freepid() function increases the number of processes — so
it should immediately be followed by the creation of the belonging process.

The proccount variable has to be initialized at the program start:

(variable definitions 3a)+= (2) <3a Tho
proccount = 0O; # number of processes in the system

1.2.1 Process status

As promised, we now talk about the process status. In our simple model a process
may be in one of four states:

e active: The process is currently holding the CPU ressource.

e ready: The process waits for the CPU to become available (more precisely:
for the scheduler to elect it).

e blocked: The process is currently waiting for the end of an I/O operation.
After being unblocked it becomes ready immediately.

e done: The process has terminated.

We define integer constants for these four states which will be used throughout the
program:

(variable definitions 3a)+= (2) «7a
status constants
S_ACTIVE=1
S_READY=2
S_BLOCKED=3
S_DONE=0

As a tool for the process list function to be defined later, we provide a simple
function that translates the numbers into meaningful strings:

(function declarations 3c)+= (2) <6b 8b>
def statusname (i):
try:
return ["Done","Active","Ready","Blockd"] [i]
except:
return "Error"

8a

8b

8c

August 24, 2008 sched-rr10.nw 8

1.2.2 Process creation

Now we have all the tools and data structures we need to create a new process from
a line in the configuration file. Remember that during the evaluation of these lines
in (parse configuration data 4b), a function create_process is called several times,
with two arguments: the starting time (an integer) and the process behavior, a list
of computing and I/O wait times, ending with -1. We define create_process as
follows:

(create process 8a)= (8b)
def create_process(starttime, behavior):
pid = get_freepid()
task={}; tasks.append (task) # empty task
set_starttime(pid, starttime)
set_behavior(pid, behavior)
set_firstruntime(pid, -1) # has never run yet
set_cputime(pid, 0)
set_iotime(pid, 0)
set_status(pid, S_READY)
set_usedquant(pid, 0)
if behavior[0]==0:
process starts with I/0
set_behavior(pid, get_behavior(pid)[1:])
set_status(pid, S_BLOCKED)
set_endtime(pid,-1) # process not finished yet
return pid

Defines:
create_process, used in chunk 4b.

We have to add this new function to the list of function declarations:

(function declarations 3c)+= (2) <7c 8c>
(create process 8a)

1.3 Helper functions

Since the complete program will simulate the scheduling component of an operating
system, some helper functions are needed, and we introduce them now.

First, we define an activator function which, given a process ID, will walk through
the process list, searching for the currently active process and change its state from
S_ACTIVE to S_READY; then it will set the state of the process with the given ID to
S_ACTIVE (assuming it was S_READY before).

(function declarations 3c)+= (2) <8b 9»
def activate (pid):
for t in tasks:
if t["status"] == S_ACTIVE: t["status"] = S_READY
tasks[pid] ["status"] = S_ACTIVE

Defines:
activate, used in chunk 12.

August 24, 2008 sched-rr10.nw 9

Next, we declare a process list tool ps that enumerates all the currently existing
processes — note that by “existing”, we mean that start time of the process is <
the current CPU time. So while a process may be listed in the process list variable
tasks, it need not appear in the output of ps.

(function declarations 3c)+= (2) <8 10b
def ps ():
global tasks,proccount,cputime,runqueue,blocked
print "PID | Sta | End | CPU | I/0 | Status | Verhalten"
for pid in range(O,proccount):
if cputime >= get_starttime(pid)-1:
task = tasks[pid]
print "%3d | %3d | %3d | %3d | %3d | %6s |" % (pid,
get_starttime(pid), get_endtime(pid),
get_cputime(pid), get_iotime(pid),
statusname (get_status(pid))),
print task["behavior"]
print "Runqueue:",runqueue," Blocked:",blocked
print
return

Defines:
ps, used in chunks 12 and 18b.

10

August 24, 2008 sched-rr10.nw 10

In the end, before the program terminates, it should print some information about
the behavior of the process. It will use the following function stats for this purpose.
The turnaround time (column TurnAro) is the difference end time (column End)
— arrival time (column Arrival), where the arrival time is the first value in the
configuration file entry. Thus the turnaround time describes how long a process
remained in the system. In contrast to the arrival time, the first-run time (column
Start) is the time when the process had its first CPU cycle. The CPU time (column
CPU-tme) is the amount of computing time that the process used — it is independent
of the scheduling decisions.

It is interesting to also note the quotient of turnaround time and CPU time: The
closer it gets to 1, the better the scheduler’s decisions have been from this process’
point of view.

(function declarations 3c)+= (2) <9 11>
def stats():
global cputime
print
print "Endzeit: %d" % cputime
print "Trace:",trace

print "Laufzeiten:"
print "PID Arrival CPU-tme Start End TurnAro Quotient"
print "--———— "

for pid in range(O,proccount):
stime = get_starttime(pid)
etime = get_endtime(pid)+1
frtime = get_firstruntime(pid)
cputime = get_cputime(pid)

if cputime != O:

ratio = (etime-stime+0.0)/cputime
else:

ratio = -1

print "%3d %7d %74 %7d %7d %7d %9.4f" Y (pid,
stime, cputime, frtime, etime, etime-stime, ratio)

Defines:
stats, used in chunk 18b.

11

August 24, 2008 sched-rr10.nw 11

This will display an output such as

Endzeit: 91

Trace: [0, O, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1,1, 2, 2, 2, 2,
2, 2,2,2,2,2,2,2,2,2,2,3,3,3, 3, 3,3, 3, 3,3, 3, 3, 3,
3,3, 3,0,0, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 2, 2, 2,
3, 3, 3,3, 3, 3,3, 3, 3,3, 3, 3,3, 3, 3, 0,0, 2, 2, 2, 2, 2, 2,
2, ’END’]

Laufzeiten:

PID Arrival CPU-tme Start End TurnAro Quotient
0 0 6 0 84 84 14.0000
1 0 30 2 64 64 2.1333
2 0 25 17 91 91 3.6400
3 0 30 32 82 82 2.7333

The trace that was shown in the output above is a list that describes what happened
at what point in time — there are three entry types:

e a process ID — the process with the given ID was executed.

e NONE — no process was executed (because all processes were blocked while
waiting for the end of an I/O operation).

e END — all processes have finished. This entry will only appear as the last one.

The trace is generated while executing the main loop (main loop 12):

(function declarations 3c)+= (2) <10 14>
def log_to_trace(status):
global trace
if status == -1: status = "NONE"
elif status == -2: status = "END"
trace.append(status)

August 24, 2008 sched-rr10.nw 12

2 The Main Loop

The basic idea behind the simulator is that in a loop the scheduler (scheduler 16) is
called repeatedly and then the system executes one instruction of the process that
was chosen by the scheduler.

If a process was blocked in this step, its waiting time has to be updated (decreased
by 1); and if the waiting time goes down to 0, the I/O phase is over and the process
becomes ready again. (This is done in update_blocked_processes.)

Depending on the result (current) which the scheduler function schedule returns,
there are three possibilities:

e The scheduler has selected a process for execution (current > 0), in that case
this process is activated and executed (one step), and the waiting times of the
blocked processes are updated.

Notice that this description models a preemptive scheduler. If a non-preemp-
tive scheduler is to be implemented, the scheduler will have to “stick” with
a decision it made once, i.e., it has to re-select the same process again and
again until it terminates or changes to an I/O phase.

e The scheduler found no ready processes (but there are still unfinished pro-
cesses in the system): current = —1. In this case only the waiting times are
updated; no process executes.

e The system is done (current = —2). Nothing remains to to.

12 (main loop 12)= (18b)
while not finished:
(check for mew processes 13)
current = schedule()
log_to_trace (current)
if current >= O:
print "Time: %4d, Executing PID: %3d [%3d]" % (cputime,
current,get_cputime(current))
activate (current)

run_current () # run current process
update_blocked_processes() # decrement wait times
elif current == -1:

print "Time: %4d, all blocked" ’ cputime
update_blocked_processes() # decrement wait times

else:

finished = 1

break
psO # show process list
cputime += 1 # increment CPU time

Uses activate 8¢, ps 9, run_current 14, schedule 16, and update_blocked_processes 15a.

13

August 24, 2008 sched-rr10.nw 13

where in each cycle the system also checks whether new processes have appeared
(those with a start time that is equal to the current CPU time) — for each such
process there is also a check whether it starts with a blocked phase.

(check for new processes 13)= (12)
for pid in range(O,proccount):
if get_starttime(pid) == cputime:

if get_status(pid)==S_BLOCKED:
blocked.append(pid)

else:
runqueue . append (pid)

August 24, 2008 sched-rr10.nw 14

2.1 Running a process and handling blocked processes

Once a process is blocked, it is moved into the special queue blocked (and removed
from the runqueue). This happens in the run_current function which otherwise is
responsible for running the current process.

Running the process consists of the following tasks:

e checking whether a process is run for the first time ever — if so, the current
time is saved in the PCB structure via set_firstruntime for later referral.

e reducing the first element of the behavior list by 1 (using dec_behavior_head)
and increasing the process’ cputime (inc_cputime).

e if this leads to the head element of behavior becoming 0, it means that the
process has finished the recent CPU cycle and moves to an I/O wait phase
(or terminates). The function determines which of these is the case by first
removing the old head element (now 0) and then looking at the new head: If
it is non-negative, an I/O phase follows; otherwise it can only be —1 which
means termination of the process.

e If the process becomes blocked the status must be set to S_BLOCKED, the pro-
cess is removed from the runqueue and added to the blocked queue.
If the process terminates, its status is set to S_DONE, it is removed from the run-
queue and the current time is saved in its endtime element using set_endtime.

14 (function declarations 3c)+= (2) <11 15ap
def run_current():
global current, cputime, runqueue, blocked
if get_firstruntime(current) == -1:
set_firstruntime(current, cputime)
dec_behavior_head (current)
inc_cputime(current)
if get_behavior(current) [0] == O:
current CPU cycle is over; possibly become blocked
remove_behavior_head (current)
set_status(current,S_BLOCKED)
runqueue.remove (current)
if get_behavior(current) [0] == -1:
process terminates
set_status(current,S_DONE)
set_endtime(current,cputime)
if current in runqueue: runqueue.remove(current)
else:
I/0 phase
blocked.append(current)
return
Defines:

run_current, used in chunk 12.

15a

15b

August 24, 2008 sched-rr10.nw 15

Information about blocked processes must be updated as well. This happens in the
update_blocked_processes function which is called from the (main loop 12) just
after run_current. It goes through the blocked list, and for each process found
does the following:

e it reduces the remaining I/O wait time (which for a blocked process is also in
the behavior head element, so this can be done with dec_behavior_head, as
in run_current).

e Next the I/O wait time (iotime) is incremented for the later analysis.

e Similar to the transation from S_ACTIVE to S_BLOCKED here the transition from
S_BLOCKED to S_READY must be handled: When the head element of behavior
has reached value 0, that head is removed. Depending on the next element
(it being non-negative or —1), the process status is set to either S_ACTIVE or
S_DONE. In both cases the process is removed from the blocked queue (it is no
longer blocked), and it is appended to the runqueue if it becomes ready. If
the process terminates, the end time is saved.

(function declarations 3c)+= (2) <14 18an
def update_blocked_processes():
global current, cputime, runqueue, blocked
for pid in blocked:
if cputime >= get_starttime(pid) and pid != current:
dec_behavior_head (pid)
inc_iotime(pid)
if get_behavior(pid) [0] ==
remove_behavior_head(pid)
set_status(pid, S_READY)
blocked.remove (pid)
if get_behavior(pid) [0] == -1:
set_status(pid,S_DONE)
set_endtime(pid,cputime)
else:
runqueue . append (pid)
return

Defines:
update_blocked_processes, used in chunk 12.

3 The Round Robin Scheduler

Now we come to the heart of this program — the implementation of the Round
Robin Scheduler. The main concept of this scheduler is time slicing: The CPU is
virtualized by letting each process assume it holds the CPU for itself alone, and the
scheduler lets the system switch between processes regularly. The interval length
that determines how long each chosen process may go on computing before a context
switch is called quantum length, and in our implementation we define it by setting
the constant RR_QUANT (Round Robin Quantum):

(user defined constants 15b)= (2)
RR_QUANT=15

Defines:
RR_QUANT, used in chunk 17a.

August 24, 2008 sched-rr10.nw 16

In the “real world” a Round Robin scheduler depends on the computer allowing
for preemptive scheduling, i.e. having an internal clock and timer interrupts. In
our model the main program (the simulator) can be seen as generating an interrupt
after every process instruction (or time cycle in which all processes were waiting for
I/O completion). In a real system clock interrupts occur less frequently, and the
scheduler is activated even less frequently, but in our model the scheduler is run
after every instruction.

1. The Round Robin scheduler first checks whether the currently active process
has used up its quantum — if so, it is removed from the head of the runqueue
and appended at its end: We use a simple FIFO queue for the processes.
If a quantum length of infinity (or simply large enough) were chosen, the
scheduler would degenerate to the non-preemtive FIFO scheduler. This first
check is implemented in (sched check current may continue 17a). Notice that
it is necessary to also check whether current is -1 — in that case there was no
current process (which may mean the system was just started or all processes
are blocked).

2. Next we check whether there are any processes left to execute — they may be
found in either the runqueue or the blocked queue. That is done in (sched
check runqueue and blockedqueue 17b). A last thing to check — only in the case
that both queues are empty — is whether there are “future processes”, that is:
those which have a start time in the future. If so, the scheduler returns -2.

3. Now, if we reach the next step, there is at least one process in either the
runqueue or the blocked queue; if the runqueue is non-empty we return the
head of that list; otherwise we return -1, indicating that all processes are
blocked.

16 (scheduler 16)= (18a)
def schedule():
Round Robin Scheduler
global current, tasks, runqueue, blocked, current, cputime
(sched check current may continue 17a)
(sched check runqueue and blockedqueue 17b)
choose head of runqueue or return -1 if it is empty

if (runqueue !'= []):
return runqueue [0]
else:
return -1
Defines:

schedule, used in chunk 12.

17a

17b

August 24, 2008 sched-rr10.nw 17

The current process will typically be marked active — that is the first thing the
scheduler checks in this step. If it is not active it can either be done or blocked;
it cannot be in the ready state — get_status(current) can never be S_READY,
since only the scheduler resets the active state, and there is no other transition to
S_READY but from S_ACTIVE, except for process creation, and the current process
is not a newly created process.

Finding out whether the current (and active) process may continue is then just
looking at the quantum used so far — the condition get_usedquant(current) <
RR_QUANT-1 must hold. If so, the used quantum is incremented, and the scheduler
returns the current process’ ID.

If not, the current process has used up its quantum and a new process must be
chosen. In preparation, the used quantum length is reset to 0 (for the next run of
this process), and the process is removed from the runqueue’s head and appended
to its tail. The variable current is then set to the runqueue’s (new) head. Note
that here it cannot happen that the runqueue is empty, because the formerly active
process has just been appended to its tail. In general the runqueue could be empty,
but that would mean that the old current process was not active and thus we would
not run through this code.

(sched check current may continue 17a)= (16)
if (current!=-1) and (get_status(current) == S_ACTIVE):
if get_usedquant (current) < RR_QUANT-1:
inc_usedquant (current)
return current
else:
set_usedquant (current,0)
runqueue.remove (current)
runqueue . append (current)
current=runqueue [0]
return current
Uses RR_QUANT 15b.

If both the runqueue and the blocked queue are emptied, all processes which
existed before, have terminated and left the system — so it may be over. But
there may also be processes who have not started yet. This is checked by call-
ing futureprocesses(cputime): If the returned list is empty, there are no future
processes, and the system will stop.

(sched check runqueue and blockedqueue 17b)= (16)
if (runqueue == []) and (blocked == []):
vielleicht kommt noch einer?
if futureprocesses(cputime) == []: return -2

Uses futureprocesses 18a.

18a

18b

18c

August 24, 2008 sched-rr10.nw 18

The function futureprocesses is defined here and added to the list of function
declarations. For a given time t, the function returns a list of all processes with a
start time that is greater than the given time.

(function declarations 3c)+= (2) «<15a
def futureprocesses(t):
gibt alle PIDs zurueck fuer Prozesse, die nach Zeit t starten
global proccount
fp = [1
for pid in range(O,proccount):
if get_starttime(pid) > t: fp.append(pid)
return fp
(scheduler 16)

Defines:
futureprocesses, used in chunk 17b.

So far we have not defined the (main program 18b) section that consists of initial-
ization, the main loop and printing the statistics — here it is:

(main program 18b)= (2)
init ()
print "Number of tasks: ", proccount
psO
(main loop 12)
stats()
Uses init 3b, ps 9, and stats 10.

What remains is the Python header which starts with the typical “hash-bang” line
for finding the interpreter, followed by a coding description (to allow for german
characters such as &61ifl) and then some version and copyright information.

(python header 18c)= (2)
#!/usr/bin/env python
—*x- coding: iso-8859-15 -x*-

scheduler.py v1.1 (Praktikum, Arbeitsblatt 6)
#

Vorlesung Betriebssysteme

Hans-Georg Efler, Hochschule Miinchen

hans-georg.esser@hm.edu

19

August 24, 2008 sched-rr10.nw 19

4 Discussion

This scheduling simulator was used in an exercise for computer science students
taking a course on operating systems. The simulator was provided with a different
scheduler (non-preemptive FCFS) that had to be modified, and the original version
was written in Python from scratch (without the literate programming approach).
The original code was modified and cleaned-up, e. g. direct access to PCB structures
was replaced with access via get_, set_, dec_ and inc_ procedures.

I’'ve made the attempt to document the new code as fully as seemed useful. I will
put this document up for discussion on the lecture website, though I assume that
only few of my former course participants will look at it.

When “tangling” and “weaving” this document, the output is ca. 7 KByte of
Python code and 50 KByte of I¥TEX documentation, where the original source
only contained a few lines of explaining comments. So now there is substantial
documentation which may help students of upcoming OS courses better understand
the concept of this simulator.

A Usage Instructions

In order to work, noweb requires the existence of a IMTEX environment, as well as
the noweb package itself. The author, Norman Ramsey, provides Debian, RPM and
tar.gz versions of this software package on his homepage [Ram06]. A test installa-
tion on an OpenSuse 11.0 Linux system showed no dependencies on other packages,
however when trying to use the noweave program, it turned out that one additional
package was required: iconz, an “Executor for Icon, a high-level programming lan-
guage”. The Debian repositories carry an iconz deb package (e.g. ftp://ftp.
debian.org/debian/pool/main/i/icon/ that could easily be converted into an
rpm package using alien (http://kitenet.net/programs/alien/).

This document and the program file scheduler.py can be generated using the
following script:

#!/bin/bash

generate sched-rr10.dvi (documentation)

noweave -index -delay -latex sched-rr10.nw > sched-rrl0.tex
latex sched-rr10.tex

bibtex sched-rri0

latex sched-rr10.tex

xdvi sched-rr10.dvi

generate scheduler.py (program) and run a test
notangle -Rscheduler.py sched-rr10.nw > scheduler.py
notangle -Rtest.dat sched-rr10.nw > test.dat

chmod a+x scheduler.py

./scheduler.py test.dat

The test file test.dat is also part of this noweb document and is defined here:
(test.dat 19)=

0:2,5,2,5,2,-1
0:30,-1

August 24, 2008 sched-rr10.nw 20

0:18,5,7,-1
0:30,-1

For creating the dwi file it is also necessary to have the bibtex file with the references
(1it.Dbib).

References

[Efe08] Hans-Georg Efer. Betriebssysteme I, Unterlagen zur Vorlesung, 2008.
http://hm.hgesser.de/bs-ss2008/.

[Knu84] Donald E. Knuth. Literate Programming. The Computer Journal, 27:97—
111, 1984.

[Ram94] Norman Ramsey. Literate Programming Simplified. IEEE Software, pages
97-105, September 1994.

[Ram06] Norman Ramsey. noweb web page, 2006. http://www.cs.tufts.edu/
~nr/noweb/, accessed 2008/08/24.

